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Infrared Absorption of High Temperature 
Superconductors 

  A. P. Singh 
  
Abstract 
The temperature dependence of infrared absorption coefficients for high temperature superconductors are investigated in two forms: (i) in the close vicinity of Tc 
the superconductivity increases so that the cooper pairs dominate over normal electronics contribution and (ii) the contribution of normal energy becomes small 
compared to the cooper pair energy. The developed expressions electronic infrared absorption coefficients for high temperature superconductors are obtained 
by using double time temperature dependent Green’s functions. The almost complete Hamiltonian used in the study include the contributions due to the 
unperturbed phonons and electrons, anharmonic phonon fields, localized phonon fields and that of electron-phonon interactions. The total infrared absorption in 
high temperature superconductors is obtained as the sum of calculations of strength of absorption at the gap- or local-mode energies have been made for some 
samples. The non availability of several physical quantities for Nb3Sn compound and involvement of the wide range of energies, a great complexity in 
computation was eradicated by showing the general trends of the variation of absorption coefficient with changing energy and temperature. 
 
Index Terms:-  Absorption coefficient, Cooper pairs, Hamiltonian, Infrared, phononic and electronic, Impurity concentration and superconductors. 

——————————      —————————— 
 

1   Introduction 

Well known properties of real crystal, e.g., 
lattice thermal conductivity, thermal expansion, 
phonon life time and dielectric properties as 
observed by infra-red spectroscopy which cannot 
be explained by harmonic approximation [1]. In 
the harmonic approximation the absorption 
spectrum of a cubic crystal reveals a sharp line at 
the dispersion frequency, which is the frequency 
of the transverse mode of zero wave vectors in 
the optical branch. These results are contradicted 
by experimental evidence which shows that, 
strong absorption at the dispersion frequency is 
superimposed on a continuous background of 
absorption on subsidiary maxima. The 
calculations of Pauli [2], this discrepancy has 
been attributed to neglect the anharmonic terms 
in the expansion of the lattice potential energy in 
powers of the displacements of ions from their 
equilibrium positions. Pauli studied a linear chain 
of alternating positively and negatively charged 
particles of equal mass and obtained a dispersion 
formula. Such a formula predicts a continuous 
absorption with maxima at the dispersion 
frequency; it does not predict any subsidiary 
maxima. Pauli’s work was extended by Born and 
Blackman [3, 4] and studied a linear chain of 
alternating positively and negatively charged 
particles of different masses. They showed that in 
this model the effect of these anharmonic terms is  
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to damp the infinitely sharp peaks at the 
dispersion frequency, to provide a continuous 
absorption at frequencies different from the 
dispersion frequency, and to provide subsidiary 
or secondary maxima in the spectra.  
Born and Huang gave a new treatment of 
anharmonic optical absorption in complex 
lattices. It is a quantum mechanical treatment 
based on a modification of time-dependent 
perturbation theory of Weisskopf and Wigner [5]. 
According to this theory, high temperature range 
gives the damping with 3T dependence. 
Mitskevich [6] has taken case of the third- and 
fourth-order anharmonicity. Vinogradov [7] has 
enumerated the deficiencies in the Born and 
Huang theory and used the Green’s function 
technique to study infrared absorption. 
Kashcheev [8] extend this method to study the 
infrared absorption considering third- and 
fourth-order anharmonicity.  Born and Huang 
approach, Maradudin et. al. and others [9,10] 
investigated the theory of absorption spectrum of 
a particular nontrivial model: a linear chain of 
alternating positively and negatively charged 
particles with different masses and nearest-
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neighbor interaction only. Their results are 
comparable directly with the Born and Huang’s 
results with some discrepancies. The work 
discussed above effect of the anharmonicities on 
infrared absorption in crystals has not been 
sufficiently accurate.  

The anharmonicity is described[11] for infrared 
absorption using temperature-dependent double-
time Green’s function technique and taking into 
account both the lattice anharmonicity and higher 
order electric dipole moments of the crystal. A 
modification of the Kubo formalism for treating 
transport coefficient is employed to obtain 
general expressions for dielectric susceptibility 
and absorption coefficient of crystals having 
arbitrary structure.  

Many authors [12-15] have studied theoretically 
the problem of infrared absorption due to a very 
low concentration of impurities in the crystal. 
Using the temperature dependent double-time 
Green’s functions and Kubo formulism in term of 
dielectric susceptibility and provided sufficient 
information on infrared absorption. 

The infrared properties of the high temperature 
superconductors have attracted considerable 
attention [16-20] with many attempts to 
determine the superconducting energy gap as 
well as the low-frequency excitations. The 
microscopic origin of the gap was clarified by the 
theory of Bardeen et al [21] which also 
successfully explained superconductor properties 
in the static electromagnetic field such as 
Meissner effect. Furthermore, other authors 
considered effects of impurities [22] and strong 
coupling [23]. Great attention was paid to the 
analysis of the optical spectra of low-Tc and high-
Tc superconductors in the infrared and far-
infrared regions [24–27]. A complete review of 
the optical properties of high temperature 
superconductors can be found in papers [28, 29]. 
 
2   Absorption Formulism 
The optical absorption coefficient related to the 
Green’s function [17 and 30] for a light wave of 

energy∈, with velocity v in a medium of 
refractive index η  can be written in the form In 
the cubic case of a diatomic crystal 
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where 1M and 2M are the masses of two atoms, j is 
one of the branch indices and N describes the 
number of cell in the crystal. The above Eq.(1) can 
be arranged  [17] as 
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where the reduced mass of a crystal is µ , 0∈  is the 
transverse optical mode energy at 0=k  for the 
host lattice. For the diatomic lattice with masses 

1M  and 2M  reduces to 1
2121

1 )( −− += MMMMµ . The 
linear infrared absorption coefficient )(∈κ can 
easily be obtained on substitution of imaginary 
part of Green’s function into Eq.(2). 

 
3   The Hamiltonian 
The almost complete Hamiltonian of such a 
system can be written as   
  DAepep HHHHHH ++++=                   (3)       
where pH  is the unperturbed phonon 
Hamiltonian, eH  is the unperturbed electron 
Hamiltonian, epH  is the electron-phonon 
Hamiltonian, AH  is the anharmonic Hamiltonian 
and DH  is the defect Hamiltonian arising due to 
the substitution impurities respectively, which is 
given by  
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In above expressions **
kkkk −− +=+= AaaA  

(phonon field operator) and **
kkkk −− −=−= BaaB  

(phonon momentum operator), )( *
qq bb and )( *

kk aa  
are electron and phonon annihilation (creation) 
operators with wave vectors q and k respectively. 

qkQ += . k∈ , q∈ , kg , ),...,,( 21 ssV kkk , ),( 21 kkC  

and ),( 21 kkD  stand for the electron energy, 
phonon energy and electron-phonon coupling 
coefficient, anharmonic coefficients, mass 
difference and force constant change parameters, 
respectively.  
 
4   Electron Green’s function                      
Let us consider the double-time thermodynamic 
electron retarded Green’s functions  
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In above Eq.(5),σ defines the spin and )(↓↑  
designates the spin up (down) for electrons.  
With the help of equation of motion technique of 
quantum dynamics via Hamiltonian (4) in the 
form 
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where )~(~ 22
qq ∈≡∈ σ  is the renormalized energy, 

which is equal to 
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where C∈ is the energy of cooper pair. In Eq.(6) 
the delta function σδq acquires a large number of 
momentum and spin combinations, 
namely ↑↑ qq δδ , ↓↑ qq δδ , ↑↓ qq δδ , ↓↓ qq δδ , ↑↑− qq δδ , 

↓↑− qq δδ , ↑↓− qq δδ , ↓↓− qq δδ . During the above 

development it is surprisingly found that the 
cooper pair energy C∈  as well as the normal 
electron energy N∈  automatically emerges out in 
the results. The solution of function ),( ∈qP  can be 
obtained after decoupling of the developed 
Green’s functions from the Green’s 
function 〉〉′〈〈 ′′

∗ )();( tFtF qq σσ , with the help of 
electron and phonon renormalized Hamiltonians 
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The value of σQN  is including through the cooper pairs and normal electron problem via 

)]3([ CN ∈+∈−∈δ function. This cannot be normally solved with usual process. Hence, here we can write 
above expressions as (to the reasonable degree of accuracy and without violating physical lows) 
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The response function can be written as  
),(),(),( )()( ∈Γ+∈∆=∈ qiqqP epep          (15) 

The electron-phonon energy shifts ),()( ∈∆ qep  are the principal value of ),( ∈qP . The shift ),()( ∈∆ qep and line 
width ),()( ∈Γ qep can be separated in three terms, such as  
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Now, the imaginary part of ),()( ∈qG e  is given by  
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5   Infrared absorption coefficient  
The linear infrared absorption coefficient )()( ∈epα can easily be obtained on substitution of imaginary part of 
electron Green’s function given by (18) into (2) as 
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The Lorentzian line shape distribution appearing in above Eq.(19) can be simplified under reasonable 
approximations for the small value of ),()( ∈Γ qep far from the fundamental absorption peak q∈=∈ , to give  
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The electron infrared absorption coefficient )()( ∈epα can be separated in three terms, namely: (i) 

)()( ∈A
epα (anharmonic contribution), (ii) )()( ∈D

epα (defect contribution) and (iii) )()( ∈EP
epα  (electron-phonon 

contribution). Thus 
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The infrared absorption coefficient )()( ∈epα is proportional to the line width )()( ∈Γ ep . The defect contribution 
to the absorption coefficient is dominant only force constant change parameter, which depends on the 
temperature and contribution of impurities. The anharmonic contribution )()( ∈A

epα to the absorption 
coefficient depends on the anharmonic parameter. 
  
6   Absorption coefficients for high temperature superconductors   
When in the close vicinity of Tc the superconductivity increases so that the cooper pairs dominate over 
normal pairs. In this case )( NC>>∈∈ and thus,  

            
[ ]

(26a)
)(

]),(~[2
)(

1

)~(2
2

)(~)(~4
4
1),(

6

22

4
0

224222
)(









∈

∈−∈
−

∈∈
∈

×









∈∈+
∈

∈+∈∈−Ω=

CC

k
C

k

C

k
C

kkcv
EP
ep

Ck

nnGPCkα
 

            
)b26(

)(
]),(~[2

)(
1

)~(~
2

)(),(8),(

6

22

4

0
1

2
11

1

2
1

2
)(









∈

∈−∈
−

∈
×

∈
∈









∈+∈∈

∈
−Ω= ∑

CC

k
C

kk

C

k
kcv

D
ep

Ck

nnkkDGPCkα
 

            
[ ]{

} )c26(
)(

]),(~[2
)(

1)~(

2
)(~~),,(18).(

0
6

22

421
2

1
2,1

2
213

23
)(

∈
∈









∈

∈−∈
−

∈
∈+

∈
∈+∈−Ω= −−++∑

CCkk
C

C

kk
kcv

A
ep

Cknn

nSSkkkVGPCk ααααηα

 

            
( )[

] (26d)
)(

]),(~[2
)(

1)~(

2
)(~3~),,,(96),(

0
6

22

4321
2

2
2

3214
3,2,1

24
)(

∈
∈









∈

∈−∈
−

∈
∈+

∈
∈+∈−Ω= −−++∑

CCkkk
C

C

kkk
kcv

A
ep

Cknnn

nSSkkkkVGPCk ββββηα

 

In the case of superconductors the contribution of normal energy becomes least than the cooper pairs 
energy, so that the cooper pairs energy is greater than the normal energy )( CN <∈∈ . Therefore, the 
contributions of absorption coefficient can be written in this form  
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7   Temperature Dependences  
The line-width depends on temperature, renormalized (or perturbed) mode energy via its 
constituents )()( ∈EP
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epα  and )()( ∈A

epα  of electron line-width and )()( ∈EP
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epα  and )()( ∈A
epα  of electron 

line-width. Substituting the value of electron line-width ),()( ∈Γ qep in expressions of electron infrared 
absorption coefficients and is of the form  
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In these above expressions we have seen that the electron infrared absorption coefficients are direct 
depends on the temperature through σQN  and kn (s). These coefficients are not only depends on the 
temperature but also depends on the energy and impurity concentration via renormalized mode energy 
and line-width ),()( ∈Γ qep . The electron line-width for the cubic and quartic anharmonicities shows the 
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temperature dependence of the form 2T  and 3T . Hence the infrared absorption coefficients show the strong 
temperature dependence of a crystal 
 
8   Applications 
The temperature dependence of α±S and β±S  are shown in figures (1) and (2). It is clear that α−S and β−S  
is less compare to α+S and β+S  at low temperature. From these figures we can say that the anharmonicities 
are direct depends on the temperature through kn (s). 
 
 
 

 
 
   
 
 
 
 
 
The Cooper pair energy C∈ and temperature T  dependence of A  is depicted in figure (3). This figure 
shows that A  increases with temperature T and Cooper pair energy C∈  as evidenced by this figure.    
 
 
 
 
 
 
 
 
 
 
 
 
The variation of terms B, C and D with simultaneous change in cooper pair energy C∈  and temperatureT  
have been depicted in figures (4), (5) and (6). The effects of cooper pair energy C∈ , temperatureT , electron-
phonon interaction and defect on 

..
1

)( )(
LGep ∈−α are shown in figures (3), (4), (5) and (6).  

 
 
 
 
 
 
 

 
 

Figure 5:  3-D variation of  C [Eq. (3.73)] with C∈  and T  
 

Figure 4:  3-D variation of  B [Eq. (3.72)] with C∈  
d T  

 

Figure 1:  Variation of α+S and α−S  with 

  
Figure 2:  Variation of β+S and β−S  with 

  

Figure 3:  3-D variation of A [Eq. (3.71)] with C∈ and T  
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Due to the non availability of several physical quantities for different samples and involvement of the 
wide range of energies, a great complexity in computation was eradicated by showing the general trends 
of the variation of absorption coefficient with changing energy, temperature and impurity concentration. 
This can be successfully explained with the help of present theory. 
 
9   Conclusion  
The absorption coefficient obtained here can be expressed as a sum of three terms for electronic 
absorption )()( ∈EP

epα , )()( ∈D
epα and )()( ∈A

epα . In the expressions of infrared absorption coefficients )()( ∈epα , we have 
seen that the electron infrared absorption coefficients are direct depends on the temperature through σQN  
and kn (s). These coefficients are not only depending on the temperature via renormalized mode energy 
and line-width ),()( ∈Γ qep . This theory is thus capable to study the absorption effects in High temperature 
Superconductors. 
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In above calculations some physical parameters for A-15 (Nb3Sn) superconductor are used, which are 
given in table.  

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014                                                                                                      1316 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

 
 M ′  Mass of the impurity atom (Sn) 2210962.1 −× (gm) 

M  Mass of the host atom (Nb3) 2210607.4 −× (gm) 
µ  Reduced mass 2210376.1 −× (gm) 

V  Volume of the unit cell of Nb3Sn crystal 2210480.1 −× (cm3) 

0a  Lattice parameter of  Nb3Sn crystal 810290.5 −× (cm) 

1α  Coefficient of interaction of two atoms of Sn 810898.0 × (cm-1) 

1r  Equilibrium nearest-neighbor separation  of Sn 810490.6 −× (cm) 

1D  Dissociation energy of Sn molecule 1210030.5 −× (erg) 

2α  Coefficient of interaction of two atoms of Nb 810753.0 × (cm-1) 

2r  Equilibrium nearest-neighbor separation of Nb 810009.3 −× (cm) 

2D  Dissociation energy of Nb molecule 1210758.1 −× (erg) 

pv  Phonon velocity 5100.5 × (cm/sec) 

2−µ  Second opposite moment of the frequency 
spectrum 

1510165.3 −× (erg) 

λ  Dimensionless parameter  5  
η  Dimensionless parameter 3  
N  Number of atoms per unit cell of the crystal  8  
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